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We present a method for simultaneous dimension reduction, model fitting and metastability analysis
of high dimensional time series. The approach is based on the combination of hidden Markov models
(HMMs) with localized principal component analysis (PCA) and fitting of multidimensional stochas-
tic differential equations (SDE). We derive explicit estimators for PCA-SDE model parameters and
employ the Expectation Maximization algorithm for numerical optimization of HMM-PCA-SDE pa-
rameters. We demonstrate the performance of the method by application to historical temperature
data in Europe during 1976-2002. In a comparison with the standard SARMA (Seasonal Autore-
gressive Moving Average Model) technique for time series analysis the HMM-PCA-SDE-method
exhibits better numerical performance and efficiency, especially on high-dimensional data sets. We
also compare the results of both models w.r.t. errors of one–day temperature predictions.
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Introduction

In the experimental sciences, recent years have seen a dramatic explosion in the amount and precision of
raw data that is available in the form of time series. Due to the development of computational and mea-
suring facilities in geo-sciences (e.g. reanalysis techniques in meteorology) large amounts of measured
and simulated information from all kinds of processes have been accumulated. All of these complex
processes share the following properties: (i) they are multi-dimensional, i.e. they can be completely
described and understood only from the observation or measurement of many of their characteristics
simultaneously, (ii) the dynamics of the system is typically non-linear and non-stationary, (iii) many
complex systems exhibit (hidden) phases or regimes which are persistent over long periods of time but
are not (asymptotically) stable [1]. These properties imply also a classification of data-based methods
for time series analysis in two major groups: dimension-reduction methods (aiming at identification of
essential dimensions) and model reduction methods (methods for the construction of reduced represen-
tations of the dynamics). Let us shortly review both of them in the following.

Dimension reduction methods are aiming at the general task of finding the few most important,
i.e., essential, degrees of freedom that can explain most of the observed processes and thus can help
to understand the underlying mechanisms. The problem of dimension reduction becomes crucial when
dealing with data-bases containing very large data-sets, e.g., libraries of climate data. Recent studies
show that even relatively simple linear dimension reduction strategies, such as principal component
analysis (PCA), often also referred to as empirical orthogonal function (EOF) technique [2, 3], allow
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for a significant compression of the information. However, such linear techniques as PCA, if applied
to nonlinear phenomena like transitions between the persistent states, can be misleading and produce
difficulties in the interpretation [4]; moreover, PCA detects the directions of maximal statistical variance
which sometimes may not be the information wanted.

These problems can be circumvented by statistical separation of directions in which the distribution
of data is Gaussian from non-Gaussian directions. Such NGCA approaches (non-Gaussian component
analysis) are based on the insight that in many complex systems modes with Gaussian distributions can
be interpreted as ”noise” while such with non-Gaussian distributions contain ”signals” [5, 6]. However,
all current versions of NGCA are global and rely on a stationarity assumption for the underlying process;
they are not yet extended to incorporate hidden phases.

Another dimension reduction approach, optimally persistent patterns (OPP), aims at analyzing the
temporal behavior of the system—in contrast to finding the spatial correlations and directions with
maximal spatial variation as in PCA-analysis. That is, OPP performs the data–based separation of slow
and fast degrees of freedom based on the behavior of the multidimensional autocorrelation-functions [7].
The main problem of the OPP-method is that it is very sensitive w.r.t. the length of the observed series
and the upper bound of integration of the autocorrelation function, and has difficulties with systems
switching between hidden chaotic regimes [8]. Therefore there is considerable interest in the question
of how to localize global linear techniques [9].

One class of approaches to this question considers non–linear generalizations of global/linear ap-
proaches (PCA/NGCA/ICA). This has been tried for PCA and has led to a method called NLPCA [10]
(non–linear PCA), but not yet for NGCA. However, the NLPCA strategy is numerically expensive and
not very robust, thus resulting in restricted applicability [11].

Another possibility to extend linear dimension reduction techniques is contained in the theory of
indexing of high dimensional data-bases, where the problem was partially solved by combining correla-
tion analysis with clustering techniques [12, 13], or in the context of the so-called projected clustering
methods [14]. But due to the fact that the proposed methods rely on geometrical clustering of possibly
high dimensional data–spaces, the resulting algorithms rely on some geometrical framework [15] and
scale polynomially w.r.t. the length of the time series.

Alternatively, due to additional information encapsulated in the time component, it is possible to
employ machine-learning or statistical techniques which scale linearly w.r.t. the length of the time series:
the literature provides statistical approaches to regime switching [16, 17] or Bayesian approaches like
hidden Markov models (HMMs) [18, 19, 20]. Recently, two of the authors proposed a method for
simultaneous dimension reduction and clustering of time series into persistent phases. The approach
is based on the combination of the HMM with PCA but can be also extended to combine HMM and
NGCA [21]. The problem of simultaneous dimension reduction and phase identification is solved by
optimization of an appropriate log–likelihood functional via the Expectation-Maximization algorithm
(EM) [22, 21, 20]. It has been demonstrated that the resulting HMM-PCA algorithm allows the reliable
detection of essential dimensions simultaneously with phase identification, leading to “localized essential
dimensions” in the sense that they are different for different phases [21].

Methods for model reduction / reduced dynamics aim at finding a dynamical system that
approximately describes the observed process in a low dimensional state space (where low means that
it is much smaller than the dimension of the data). For our purposes, we can distinguish at least
three main classes of related approaches for data-based model reduction: (i) Box-Jenkins identification
strategies, (ii) Bayesian models or neuronal networks, and (iii) approaches which are based on fitting of
the data with a global dynamical system that at best is “physical”/“interpretable” and usually given
in the form of coupled stochastic/deterministic differential equations.

The first group of methods, (i), originated in econometrics at the beginning of 1970s and is also known
under the name (S)ARIMA (seasonal autoregressive integrable models with moving average) [23, 24, 25].
The main idea of these methods relies on fitting the observed data with a discrete time stochastic
difference scheme. The Box-Jenkins approach is restricted to the analysis of stochastic processes that
can be made stationary by some suitable transformation of the data. Under certain circumstances, this
can be achieved, e.g., by differencing the time series or subtracting a periodic component and analysing
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the autocorrelation functions. This is a serious limitation because it implies a large degree of user
involvement into the process and prohibits automation [26].

The second group, (ii), is based on dynamical Bayesian networks, such as HMMs or neuronal networks
[18, 10]. These are set-oriented approaches, since they decompose the configuration space of the system
into several sets, where the dynamics of the system in each of the sets is described by an independent
data model. The overall dynamics of the process is then governed by a hidden process switching between
those sets. The overall model for the observed process in this case consists of the linear combination
of the local models for each of the hidden sets with some time-dependent weights γi(t) describing the
probability for the hidden process to be in the hidden set i at time t. All of the approaches from
this group that we are aware of are designed only in the context of discrete stochastic systems (e.g.,
autoregressive moving average models (ARMA) in combination with hidden jump processes [16]) and
do not allow a physical understanding of the system. Moreover, and efficient and robust implementation
for high-dimensional systems with hidden phases is still lacking.

To the best of our knowledge, the first application of the HMM-approach to low-frequency atmospheric
variability, [27], investigates a time series resulting from the barotropic quasi-geostropic equations, an
important model for the synoptic and planetary scale dynamics of the atmosphere in the middle latitutes.
The authors applied the standard HMM-Gaussian approach to cluster the one-dimensional time series
of the reduced variable exhibiting the longest correlation time. They point out the importance of the
HMM technique and the construction of reduced stochastic models for extension of the predictability
range of weather processes.

The third group of methods, (iii), attempts to fit a global mathematical model in the form of coupled
stochastic/deterministic differential equations to observed data [28, 29]. Unfortunately, due to the
“curse of dimensionality”, the available methods can deal with high-dimensional data only under very
specific assumptions (e.g., thermodynamic equilibrium, covariances of correlation matrices assumed to
be diagonal, etc.). One way of dealing with high-dimensionality is essentially based on the fitting of the
“global” data model in a full dimensionality with some low-dimensional stochastic/deterministic system
by minimizing the distance between the solutions of the full and reduced models w.r.t. some (linear)
projector defining the degrees of freedom of the reduced model. In the context of reduced models given
in the form of ODEs, this technique is known as principal interaction patterns (PIP) in the literature.
It was used for analyses of many applied problems in climate research [30, 31, 32, 8].

In this paper we present a novel method for simultaneous dimension reduction, SDE model reduction,
and clustering of the time series into metastable states. The approach is based on the combination of
HMM–PCA [21] with multidimensional SDE parameter fitting [33, 34, 35]. The problem is approached
numerically by the optimization of an appropriate log–likelihood functional by means of the Expectation
Maximization algorithm (EM), [22]. The presented method is used to analyze historical near-surface
air temperatures in Europe betwen 1976 and 2002. For the present demonstration purposes, we have
analysed publicly available ERA40 data, [36], onto a 20x29 grid in space and generated daily air temper-
atures at 2 meters elevation at 12:00h GMT. One quality check for the resulting reduced model consists
of a comparison of the temperature predictions resulting from HMM-PCA-SDE with the actual tem-
perature dynamics. Based on this test, we also compare our method with the 580–dimensional SARMA
model, [24], for the same data set.

1 Seasonal Autoregressive Moving Average Model (SARMA)

We assume that the measurements of the process are given as discrete time–dependent vector–function
xt : R1 → Rn. The time step of this time series is the distance in time between two observations, it is
assumed to be constant and we denote it by τ . In the context of seasonal auto-regressive models with
moving average (SARMA(p, q)), the measurement xt is modelled as

xt = K(t) + yt,

yt =
p∑

τ=1

ατyt−τ +
q∑

τ=0

βτWt−τ (1)
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where K(t) : R1 → Rn is some deterministic periodic vector function, Wt is an n-dimensional vector
of white noise, ατ , βτ are τ -dependent n× n matrices and yt is an n-dimensional stationary process of
the type ARMA(p, q) [37, 24]. The parameter p, as it can be seen from the formula (1), describes the
depth of a process memory wrt. a state of the system (”internal memory”), whereas q is a depth of the
memory wrt. the realizations of the noise-process (”external memory”). For example, a Markov-chain
can be understood as ARMA(1,0)-process.

In order to estimate the function K(t) one can for example Fourier-transform the data and filter
out the Fourier components which exceed a certain threshold in the spectrum. The applicability of
the FFT-technique is restricted to low dimensional cases, while for large n different dimensions of
the measured signal xt can be only treated separately making it difficult to find the high–dimensional
periodic patterns in the data. After filtering out K(t), according to the standard Box-Jenkins procedure
[23], the resulting signal yt should be checked with respect to the stationarity assumption, i. e. the
decay of the autocorrelation and partial autocorrelation functions should be visually controlled and
the time series should be differentiated if necessary. This property seriously restricts the possibility of
automatization, since the user is involved in all of the stages of the data–analysis [26]. The problem
gets even worse when dealing with high-dimensional data-sets because respective autocorrelation and
partial autocorrelation functions also become multidimensional. Having estimated the order (p, q) of
the model from the decay of both functions, one can estimate the parameter matrices (ατ , βτ ) either
through the maximum likelihood method [37] or equivalently through the solution of a system of matrix
equations known as multidimensional Yule-Walker equations, [24]. From the numerical point of view
this last step becomes expensive with growing number of dimensions n since the Yule-Walker system of
equations has n2 unknowns. This implies in general O(n6) operations for the solution of the system (in
the case when the resulting matrix is sparse the number of operations scales as O

(
n2 log(n)

)
).

2 HMM-PCA-SDE

2.1 Model

For a given n-dimensional time series xt of the length T we aim at simultaneous: (i) clustering into
K metastable sets, (ii) identification of m << n essential dimensions for each of the metastable states
(given in the form of local linear filters (µi,Ti), where µi ∈ Rn and Ti ∈ Rn×m, i = 1, . . . ,K ), and
(iii) fitting of K optimal m-dimensional SDE models for each of the metastable states describing the
reduced dynamics of the system in essential degrees of freedom. We assume that the essential dynamics
in the metastable state i can be parametrized with the help of the linear m-dimensional SDE of the
form

ż(t) = Fi (z(t)− µ̄i) + ΣiẆ (t) (2)

where Fi, Σi ∈ Rm×m, µ̄i ∈ Rm, i = 1, . . . , K and z(t) = TT
i (xt − µi). We choose this form of the SDE

model because of two main reasons: (1) as shown in [35], for the SDE of this type it is possible to derive
explicit formulas for estimating the parameters that are optimal for each individual time step τ , and
(2) application of the HMM-framework to these equations allows to describe complex multidimensional
multi-well structures without the exponential growth of the underlying model parameters (“curse of
dimensionality”) [38].

The formal solution to (2) on the time interval [t, t + τ ] is given by

z(t + τ) = µ̄i + eτFi (z(t)− µ̄i) +
∫ τ

0

e(τ−s)FiΣidW (s). (3)

Thus, the probability density ρλ(zk+1|zk) of observation of zk+1 at time k + 1 under the condition of
observation of zk at k is proportional to

exp
[
−1

2
ξ>k R−1

i (τ) ξk

]
,
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where

ξk = zk+1 − µ̄− eτFi (zk − µ̄i) (4)

Ri(τ) =
∫ τ

0

esFiΣiΣ>i esF>i ds. (5)

The subscript λ, which denotes the complete set of parameters defining the reduced dynamics of the
observed system, will be defined in (9) below.

The integral in (5) can be solved by partial integration resulting in the following linear matrix equation

Ri(τ)F>i + FiRi(τ) = eτFiΣiΣ>i eτF>i − ΣiΣ>i . (6)

Thus, we can express the joint conditional probability density of the observation of the time series (zk)
from our model by

p(z|λ) =
T−1∏

k=1

ρλ(zk+1|zk) =
T−1∏

k=1

ρ0(τ) exp
[
−1

2
ξ>k R−1

i (τ) ξk

]
(7)

ρ0(τ) = (2π)−n/
√

det (Ri(τ)). (8)

As it can be seen from (7), for fixed τ , a given observation sequence xt and projector parameters
(µi,Ti) it is sufficient to define ((µ̄i, exp τFi, Ri(τ)) in order to do a maximizitation of (7) for a given
observation sequence zt. Finding the optimal values of this objects allows to calculate the parameters
of (2). So the complete set of parameters describing the reduced dynamics of the observed system in
the metastable set i is

λi = (µ̄i, exp τFi, Ri(τ),Ti, µi). (9)

2.2 Likelihood function

In order to solve the problems (i)-(iii) simultaneously, we combine the results of [33, 34] and [21] and
construct a likelihood function as a linear combination of two functionals

L = βLHMM−SDE − αLHMM−PCA, (10)

where LHMM−PCA and LHMM−SDE are the functionals for dimension-reduction and SDE model-reduction,
respectively, and the scalar parameters (α, β) are the corresponding user-defined weights of both func-
tionals. LHMM−PCA is the least-squares residuum-functional describing the distance from the original
n-dimensional data–set to the reduced m-dimensional linear manifold

LHMM−PCA(xt,Ti, µi) =
K∑

i=1

T∑
t=1

γt(i)
∥∥∥(xt − µi)−TiTT

i (xt − µi)
∥∥∥

2

2
. (11)

Here γt(i) is the probability for the system to be in the metastable state i at time t.The functional
LHMM−PCA depends on the projector matrices Ti and center vectors µi ∈ Rn. Moreover, the projectors
Ti are subjected to the orthogonality condition:

TT
i Ti = Idm×m, (12)

The functional (11) can be equivalently written as

LHMM−PCA =
K∑

i=1

T∑
t=1

γt(i)
(
(xt − µi)

T (xt − µi)

− tr
[
TT

i (xt − µi) (xt − µi)
TTi

])
+

K∑

i=1

eTΛi
1 ·

(
Idm×m −TT

i Ti

)
e (13)
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where e = (1, 1, ..., 1) ∈ Rm, Λi
1 ∈ Rmxm being the matrix of Lagrange multipliers and · denoting the

component-wise multiplication of two matrices. It is important to mention that no assumptions about
the statistics of the observation sequence xt are necessary for construction of the optimal minimizer of
(13), and that the error of the dimension reduction in l2-norm is bounded by the actual value of the
functional. This allows to control the quality of dimension reduction since the reduced dimensionality
m can be chosen such that the corresponding value LHMM−PCA is less then a predefined threshold.

The LHMM−SDE is the corresponding log-likelihood SDE-functional. It is the logarithm of the prob-
ability of the observed data sequence (7) conditioned on the parameters λi = (µ̄i, exp τFi, Ri(τ),Ti, µi)
of the SDE

LHMM−SDE = a− 1
2

T−1∑

k=1

γt(i) log det Ri(τ)

− 1
2

T−1∑

k=1

γt(i)
(
zk+1 − µ̄i − eτFi (zk − µ̄i)

)>
R−1

i (τ)
(
zk+1 − µ̄i − eτFi (zk − µ̄i)

)

+
T−1∑

k=1

γt(i)Λi
2(k)

(
zk −TT

i (xk − µk)
)

(14)

where a is some constant and Λi
2(k) ∈ Rm is the vector of Lagrange multipliers.

Putting (13) and (14) together into (10) we can start fitting the parameters by maximizing the
resulting functional with the help of the maximum likelihood principle applied to the functional L(λ, xt),
i.e., we consider the observation sequence xt as being given and ask for the variation of the probability
in terms of the parameters and the hidden sequence of metastable sets Xt. Since the maximum of (7)
coincides with the maximum of its logarithm (14), the maximum likelihood principle then simply states,
that the optimal parameters maximize the observation probability of the time series xt and are given
by the absolute maximum of L.

In order to apply the HMM-framework to maximization of (10), we first have to make an assumption
that the hidden process switching between the metastable states is Markovian, i.e., the probability of
the state change depends on the current state only. This assumption is connected to the characteristic
timescale at which the memory kernel of the system is decaying, is satisfied for a wide class of applications
and allows to use the standard Expectation-Maximization algorithm [39], often also called the Baum-
Welch algorithm [40, 19] for the maximization. The Expectation-Maximization (EM) algorithm is a
maximum likelihood approach that improves iteratively an initial parameter set, and converges to a
local maximum of the likelihood functional (10). Its two steps, the E- and M-steps, are iteratively
repeated until the improvement of the likelihood becomes smaller than a given limit. In all other details
the EM algorithm used herein follows standard procedures.

To apply the EM algorithm to a given observation sequence, we have to set up a HMM by assuming
a finite number K of hidden states and initial values for all remaining parameters.

EM steps. There is no known way to analytically determine the model parameters that globally
maximize the probability of the given observation sequence. We can, however, estimate λ such that it
locally maximizes the conditional probability to observe a certain sequence xt, where the conditional
probability function is interpreted as P (xt | λ) = expL(λ). Since

P (xt | λ) = exp (βLHMM−SDE) exp (−αLHMM−PCA)
= exp (β + α)p(zt|λ) exp (−LHMM−PCA), (15)

with the observation probability p(zt|λ) as defined in (7). In order to be able to interpret the function P
as the probability we have to impose (α + β) ≤ 0. Since, given the orthogonality constraint in (12), we
have 0 ≤ LHMM−PCA, the expression exp (−LHMM−PCA) can also be interpreted as a probability density.
This also implies the probabilistic understanding of the exponent of the functional (10). We employ the
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EM algorithm to maximize both likelihood and log-likelihood functions simultaneously. Starting with
some initial model λ0, we iteratively refine the model within two steps:

� The Expectation-step: In this step the state occupation probability γt(i) = P (Xt = i | xt, λ), and
the transition probability ξt(i, j) = P (Xt = i,Xt+1 = j | xt, λ), are calculated for each time t in
the sequence, given the observation xt and the current model λ. The calculation of these variables
can be done in a standard HMM way [22].

� The Maximization-step: This step finds a new model λ̂ via a set of reestimation formulas. The
maximization guarantees that the likelihood does not decrease in each single iteration.

In order to apply the EM-algorithm, we need to reestimate parameters λi describing the local SDE
models and essential dimensions via their maximum likelihood estimator. Hereby, the observations xt

have to be weighted with the probability γt(i) to be in the hidden state i. In order to calculate this
reestimation formulas we fix the sequence Xt of the hidden states (this means also keeping the sequence
of γt(i) fixed) and calculate the derivatives of the functional (10) wrt. the parameters λi. Setting all
of the partial derivatives to zero for some fixed reduced dimensionality m we get a coupled system of
nonlinear algebraic equations for the parameters which can be solved numerically with the Newton–
method [41]. However, the numerical effort of the Newton-method in this case will scale as O(n6m6)
resulting in long computation times for a large number of dimensions. For high-dimensional data, instead
of the optimization of (10), we suggest first to optimize the functional (13) (since it is independent of
the SDE–parameters and it is possible to calculate the explicit optimum of this functional and to get
the explicit expressions for µi and Ti, for details see [21]) and then to use the derived expressions for the
optimal projector parameters in an optimization of (14) [35] which gives the following explicit estimators
of parameter λi

µi =
1∑T

t=1 γt(i)

T∑
t=1

γt(i)xt, (16)

Ci =
T∑

t=1

γt(i) (xt − µi) (xt − µi)
T
, (17)

CiTi = Ti max
m

(spec(Ci)) , (18)

z(t) = TT
i (xt − µi) , (19)

eτF̂i = CoriCov−1
i , (20)

µ̄i = z̄ − (Id− eτF̂i)−1δi, (21)

Ri =
1∑T−1

t=1 γt(i)

T−1∑
t=1

γt(i)dtdt
T. (22)

where maxm (spec(Ci)) denotes m dominant eigenvalues of the covariance matrix Ci and

z̄i =
1∑T−1

t=1 γt(i)

T−1∑
t=1

γt(i)zt, (23)

dt = zt+1 − µ̄i − eτF̂i(zt − µ̄i), (24)

Cori =
1∑T−1

t=1 γt(i)

T−1∑
t=1

γt(i)(zt+1 − z̄i)(zt − z̄i)
T
, (25)

Covi =
1∑T−1

t=1 γt(i)

T−1∑
t=1

γt(i)(zt − z̄i)(zt − z̄i)
T
, (26)

δi =
∑T−1

t=1 γt(i) (zt+1 − zt)∑T−1
t=1 γt(i)

. (27)
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As we can see, for a fixed sequence of hidden states Xt and a given observation sequence xt, expressions
(16-22) straightforwardly provide the unique explicit estimators for unknown parameter set λi. Note
that these estimators are independent from the parameters α and β (15) which represent the weights
of the dimension reduction and model reduction functionals in the optimization of L. Moreover, from
(15) it becomes clear that both of these parameters build a constant exponential factor in front of the
observation probability and hence are not influencing the optimization procedure wrt. λ and γt. If
wanted, we can use the so-defined estimators as initial values of the Newton method for determining
the optimal parameter λ.

The E- and M-steps are iteratively repeated until a predetermined maximal number of iterations
is reached or the improvement of the likelihood becomes smaller than a given limit. The entire EM
algorithm has the nice property that the likelihood function is non-decreasing in each step, i.e., we
iteratively approximate local maxima. As for the scaling of numerical effort, the HMM-PCA-SDE
method is linear in the length of the observation series xt, quadratic in the number of hidden Markov
states (essentially since the transition matrix elements of the hidden Markov chain should be estimated),
has order O(n) in the dimensionality of xt (since m dominant eigenvectors in n dimensions can be
computed with a Lanczos method) and cubic in the reduced dimensionality m (since the Covi matrix
in (20) has to be inverted and the log of eτF̂i has to be computed, if this matrix can be assumed to be
sparse the corresponding number of iterations should be O(m log(m))). Compared to SARMA where
the number of operations needed for the solution of the Yule-Walker system is proportional to n6 in the
general case, the HMM-PCA-SDE-approach is applicable to systems with much higher dimensionality,
even in the case of no dimension reduction (i. e. m = n). This feature is demonstrated in the next
section where both of the methods are used for analysis of the same multidimensional data-set.

Fig. 1 Spatial grid where the temperature data are available. Each of the temperatures at each of the 580 grid
points was given in a form of the time series over 9736 days between 1976 and 2002.

3 Analysis of historical temperatures over Europe between 1976 and 2002.

In order to demonstrate the performance of the presented HMM-SDE-PCA-method we take for xt daily
mean values of the 2 m surface air temperature from the ERA 40 reanalysis data [36]. We consider a
region with the coordinates: 27.0 W – 45.5 E and 33.0 N – 73.5 N (see Fig. 1), which includes Europe
and a part of the Eastern North Atlantic. The original spatial resolution of the data was reduced to
approximately 2.0°×2.5° latitude and longitude by spacial averaging. Thus we have temperature values
on a grid of 20 × 29 points. The time record is from 1976 till 2002 and it includes 9736 daily values
from 12:00h GMT observations.

Before we apply the HMM-PCA-SDE setting to the data we first check whether they can be de-
scribed by the SDE-model with additive noise. The form of the likelihood function (7) indicates that
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Fig. 2 Distribution of the temperature increments after the subtraction of the deterministic part of the dy-
namics defined by ẋt = Fi(xt − µi). Here is shown the projection of the resulting distribution on two dominant
EOFs describing > 90% of the dynamics. Standard statistical tests (like χ2–test, Kolmogorov–Smirnov–test and
Shapiro–Wilks–test) for the probability of error of type I α = 0.05 show that the resulting distribution is quite
close to a Gaussian and indicate that a data-model with additive noise is reasonable.
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Fig. 3 Spectrum of the transition matrix of the HMM-PCA-SDE hidden Markov chain indicates the presence
of 4 hidden metastable states.

after substraction of the deterministic trend the distribution of increments of the SDE-dynamics (2)
should be Gaussian. The two–dimensional histogram of the projection of this distribution on two dom-
inant EOFs is shown in Fig. 2. Qualitatively, the distribution in two dominant local EOFs is very
much reminiscent of a Gaussian. This hypothesis is quantitatively verified by applying some standard
statistical tests (like χ2–test, Kolmogorov–Smirnov–test and Shapiro–Wilks–test). Application of these
tests to marginal statistical distributions of the reduced trend–free dynamics in 20 dimensions affirms
the Gaussian hypothesis (for the probability of error of type I being α = 0.05). This feature indicates
the data-model with additive noise [37] and so far validates the application of the HMM-PCA-SDE
model with SDE-part (2).

Application of the HMM–PCA–SDE method for m = 20 (describing the 99.2% of the data variance)
with 7 hidden states to the time series indicates the presence of four metastable states (see the gap in the
spectrum of the resulting transfer operator in Fig. 3). Application of the HMM–PCA–SDE–approach
in the case of 4 hidden states and reduced dimension m = 20 results in the hidden probability functions
γi(t) shown in Fig. 4. The function γ(t) describes the temporal dynamics of probabilities for the observed
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Fig. 4 Part of the identified γi(t) function describing the probability of the hidden weather process to be in
the state i at time t. At each moment t all of these 4 probabilities sum to 1.0.

1980 1985 1990 1995 2000
"Winter"
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"Autumn"
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Fig. 5 Viterbi path of the hidden Markov chain.

temperature data to be described by each of the four local weather models (“winter”, “spring”, “summer”
and “autumn”). This function can be understood as optimal low–dimensional coarse–grained description
of the full dynamics in many dimensions and can be further analyzed itself with standard techniques
of time series analysis (like Fourier– or ARMA–analysis). Notice that the individual probabilities for
the hidden Markov states representing the four seasons exhibit sharp transitions, and that they are
practically zero everywhere outside the season they are supposed to represent. This indicates that the
identification of the states is unambiguous. This is remarkable, in particular, for spring and autumn, as
one could intuitively guess that they are more of a superposition of “winter” and “summer” with a little
bit of an individual ingredient added. In contrast, we find clear distinctions between all four seasons in
the data.
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Fig. 6 Part of the Viterbi path of the hidden Markov chain from Fig. 5. 4 hidden states can be roughly
identified with 4 seasons.
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Fig. 7 Dominant dimensions of identified metastable sets as contour plots (contain > 90% of the dynamics in
the corresponding sets).

Applying the Viterbi–algorithm [18] to the probabilities γi(t) and to the identified local models we
can find the most probable discrete hidden path of the system (also called Viterbi–path) which is shown
in Figs. 5 and 6. In this graph, each of the time instances in the temperature data series is now assigned
to one of the four seasons. In contrast to a “common sense” approach, in which the seasons would
be defined as a priori known intervals of time (e.g., from December 22 to March 21 for astronomical
winter), here this assignment is not predefined but rather depends on the corresponding probabilities
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Fig. 8 Relative variation of the difference between the parameter matrices estimated from the complete data
vector (i.e. temperature measurements from 1976 to 2003, approximately 2300 data–points for each season) and
the parameters estimated from merely part of the data (i.e. temperature measurements from 1976 to the year
shown on the abscissa of the graph.)
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Fig. 9 Fourier spectra of the components of γ(t)-function from Fig. 4. They indicate the presence of one–,
two– and three–year cycles in the data.

γi(t). They describe a certain probability distribution of temperatures in Europe at a given time being
properly represented by a certain seasonal SDE–model.

The dominant model dimensions in the seasonal states (the columns of Ti which correspond to di-
rections with maximal variance) are presented in Fig. 7 and give an idea about the correlation patterns
in the data. Positive and negative values of dominant eigenvectors correspond to correlating and anti–
correlating geographical areas, respectively. That is, when the reduced one–dimensional temperature
trajectory in the metastable state goes up, the temperature in areas corresponding to positive compo-
nents of the dominant eigenvector increases and at negative ones decreases. As it can be deduced from
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Fig. 10 Autocorrelation function (upper panel) and the partial autocorrelation function (lower panel) as being
determined in the course of the Box–Jenkins procedure of SARMA-model for the dominant EOF (after filtering
out the periodical component and stationarizing the data). Black dashed lines mark the level of statistical
significance of the analyzed time series.
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Fig. 11 Comparison of the real temperature (upper left) and the corresponding prediction with the HMM-
PCA-SDE model (for m = 20 and 4 hidden states) (upper right). The error of prediction is shown in the lower
panel.

the comparison of eigenvectors in Fig. 7, the correlation patterns are changing in the time together with
the Viterbi–path from Fig. 5. The patterns found here are strongly reminiscent of those found in the
established literature.
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Fig. 12 Temperature time series for Berlin in summer 2002 (blue solid) compared to HMM-PCA-SDE predicted
temperature (red dashed, crosses) and SARMA(4,0) (green dotted, circles). The mean prediction error for 1-day
HMM-PCA-SDE is 0.7C, for SARMA(4,0) 1.2C.

As mentioned above, the locally linearized form of the SDE allows for explicit and time step indepen-
dent estimation of the parameters, which is in contrast to estimators based on some sort of numerical
discretization of the underlying SDE. An issue to be checked is the reliability of the local SDE model es-
timation in the four hidden states wrt. the length of the data series. In Fig. 8 we compare the estimated
parameter matrices obtained from subsets of the total data set with those obtained from the full set of
data. The relative variation of the estimated parameters is quite low, so that the length of the data
set appears to be sufficient for the estimation. The application of more advanced variance estimators is
subject of future investigation.

Figure 9 shows the Fourier spectra of the occupation probabilities γi(t). Besides the obvious one-
year periodicity mode, we clearly identify further strong perdiodic contributions at two- and three-year
periods. This is strongly reminiscent of related observations in the meteorological literature, [42, 43, 44,
45, 46].

The next task is to compare the HMM-PCA-SDE model with one of the existing data-based mod-
els used for predictions in time series analysis. As a benchmark model we took a 580–dimensional
SARMA(4, 0) model. In order to stationarize the data and to determine the periodic trend K(t) in (1),
we applied a Fourier filter to each of the systems dimensions (i.e. to the temperature time series at each
of the grid-points) separately. As mentioned earlier, this makes it difficult to get an impression about the
periodicity of the process as a whole, since we obtain only the Fourier spectra of some low-dimensional
projections). In contrast, the HMM-PCA-SDE method provides direct access to the global behavior of
the multidimensional system through the γ(t)–function (see Figs. 5, 9).

Visual control of the decay of 580 autocorrelation functions indicated that the data becomes station-
ary to a good approximation and the partial autocorrelation indicates that the data can be described
with AR (auto regressive) model of order 4 (see Fig. 10)[23]. In order to fit the parameters of the
580-dimensional process, we first calculated the 580× 580-autocorrelation functions and inserted them
into the Yule-Walker system of equations [24]. The solution of the Yule-Walker system provides the
estimators for SARMA parameters ατ . One immediate result of this analysis is the temporal decorre-
lation of the dominant EOF as shown in Fig. 10. The characteristic “memory” for this mode is found
to be about 20 days, which is in good agreement with earlier suggestions in [47], which were obtained
by very different means.

In order to produce the temperature prediction at time t for both of the models (HMM-PCA-SDE
(m = 20) and SARMA(4,0)) we took the actual temperature data from the beginning of the observation
(Jan. 1, 1976) to the time (t − 1day) and fitted both of the models to the resulting time series. Then
we calculated a temperature prediction for time t from these models, including the expectation value
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and the variance for both of them. In the case of HMM-PCA-SDE, the prediction is first made for the
hidden process γi(t). As a first attempt, we constrained the prediction to a Markovian case assuming
that the underlying hidden process is Markovian and the predicted value γi(t) is dependent only on the
value of γi(t− 1). Generally, this assumption is not necessary, and one could as well fit a SARIMA(p,q)
process to the series of γi(0), . . . , γi(t − 1) with (p > 1, q > 0) in order to account for the memory
effects in the data. We intend to explore these options in more detail in a future publication. Given the
Markovian assumption, the temperature prediction at time t is a linear combination of the predictions
based on the individual SDE models in the hidden states weighed by the predicted hidden probabilities
γi(t). Fig. 11 shows a comparison of a typical temperature distribution in summer 2002 together with
the 1-day predictions from both of the models.

The 20-dimensional HMM-PCA-SDE dynamics reasonably captures the temperature dynamics in
the 580-dimensional space with a maximal prediction error of 0.8 ◦C. The maximal error occurs pre-
dominantly near the edges of the map. This can be explained by the influence of the regions lying
outside of our grid which are not covered by the measurement data and are therefore not described by
the model). Fig. 12 shows the comparison of the actual air temperature in Berlin with the predictions
calculated from both models. The 20-dimensional HMM-PCA-SDE predicts the temperature somewhat
more reliable than SARMA, the mean prediction error being 0.7 ◦C for HMM-PCA-SDE compared to
1.2 ◦C for SARMA.

A more dramatic difference arises wrt. computing times. The SARMA approach is much more
expensive than HMM-PCA-SDE, which is crucial when dealing with high-dimensional data as in the
present case. After filtering out the periodic components, the next step in the SARMA approach is the
calculation of 336400 = 580× 580 cross-correlation functions. Then a system of 336400 linear equations
is to be solved. Despite the fact that the resulting system is sparse, so that efficient numerical solvers
can be applied, the fitting of the SARMA model parameters took 16 hours on a modern PC as compared
to 6 minutes for HMM-PCA-SDE.

4 Conclusion

We present here a novel hidden Markov model (HMM)–based method for simultaneous dimension reduc-
tion, stochastic differential equation (SDE)–fitting and clustering of the time series data. The method
is based on a combination of the HMM approach, SDE parameter fitting and local principal component
analysis (PCA). Incorporation of the local PCA analysis helps to map the clustering problem into a low
dimensional space. We have demonstrated the application of the method for a historical temperature
time series and tested the quality of the resulting model for stochastic predictions. We also compared
the presented approach to the existing multidimensional SARMA-approach based on the fitting of the
observed data with a multidimensional discrete autoregressive process. We have demonstrated that
the quality of the temperature prediction in our sample meteorological application and the prediction
horizon in both models depend on the size of the underlying area, such that reliable predictions over
longer periods of time should be based on data covering much larger areas. This will be accounted for in
future, more exhaustive meteorological and climatological investigations based on the new technology
developed here.

The HMM-PCA-SDE–approach for analysis and predictions of high-dimensional stochastic dynamics
is more attractive then SARMA strategy, because besides much less computational effort, HMM-PCA-
SDE provides insight into the dynamics: (a) in the form of the hidden Viterbi–path allowing to assign
the data to each of the local models, see Figs. 5 and 6, (b) in the form of local dominant PCA dimensions
which allow the interpretation in the sense of different correlation patterns for each of the hidden states
or regimes, see Fig. 7). In our opinion, the most important feature of the algorithm is its possibility to
extract a low–dimensional description of the dynamics (function γ(t)) and further analyze it by means
of standard time series methods. For example, one can find temporal patterns in the process of the
seasonal change, investigate memory effects and find some general principles in the process of seasonal
transitions. These aspects will be explored in future publications.

One interesting issue yet to be approached is the analysis of other geographical regions and comparison
of the local principal dimensions identified with the help of HMM-PCA-SDE to the results produced by
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other dimension reduction approaches like principal interaction patterns (PIP) or optimally persistent
patterns (OPP) [32, 7]. As was already demonstrated by A. Majda and co-workers, the PIP-method
produces a more reliable optimal basis wrt. the reproduction of the switching behavior than the EOFs
or the OPP-method [8]. However, the PIP-method relies on the availability of the full mathematical
model, given in the form of the system of ODEs, in all of the observed degrees of freedom, which is not
always the case. On the other hand, besides the fact that OPP is a purely data–based method and does
not need any assumptions about the model, the procedure is very sensitive to numerical errors arising
in the integration of multidimensional autocorrelation functions. Therefore, it will be interesting to
compare all these approaches localizing the dimension reduction to each of the identified hidden states.
This is another topic of ongoing research.

Acknowledgements

We are thankful to H. Oesterle who provided us with the ERA 40 reanalysis data from the European
Center for Medium-Range Weather Forcasting. We are also indebted to A. Majda for valuable hints
and suggestions concerning the topic of the manuscript. Thanks also to Vladimir Petukhov for constant
encouragement and for providing meteorological background information.

References

[1] P. Metzner, Ch. Schuette, and E. Vanden-Eijnden. Illustration of transition path theory on a collection of
simple examples. submitted to J. Chem. Phys., 2006. (available via biocomputing.mi.fu-berlin.de).

[2] U. Achatz and G. Branstator. A two-layer model with empirical linear corrections and reduced order for
studies of internal climate variability. J. Atmos. Sci., 56:3140–3160, 1999.

[3] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.
[4] I.T. Jolliffe. A cautionary note of artificial examples of eofs. J. Climate, 16:1084–1086, 2003.
[5] M. Hristache, A. Juditsky, J. Polzehl, and V. Spokoiny. Structure adaptive approach for dimension reduc-

tion. Annals of Statistics, 29(6):1537–1566, 2001.
[6] E. Diederichs, C. Vial, A. Juditsky, J. Polzehl, V. Spokoiny, and Ch. Schuette. Sparse non-gaussian

component analysis. manuscript in preparation, 2006. (Preprint to appear October 2006).
[7] T. DelSole. Optimally persistent patterns in time-varying fields. J. Atmos. Sci., 58:1341–1356, 2001.
[8] D. Crommelin and A. Majda. Strategies for model reduction: comparing different optimal bases. J. Atmos.

Sci., 61:2206–2217, 2004.
[9] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323–

2326, 2000.
[10] A.H. Monahan. Nonlinear principal component analysis by neural networks: Theory and application to the

lorenz system. J. Climate, 13:821–835, 2000.
[11] B. Christiansen. The shortcomings of NLPCA in identifying circulation regimes. J. Climate, 18:4814–4823,

2005.
[12] P. Zhang, Y. Huang, S. Shekhar, and V. Kumar. Correlation analysis of spatial time series datasets: A

filter-and-refine approach. the Proc. of the 7th Seventh Pacific-Asia Conference on Knowledge Discovery
and Data Mining(PAKDD 2003), 2003.

[13] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimen-
sional spaces. In Proceedings of the 26th VLDB Conference, pages 98–115. Cairo,Egypt, 2000.

[14] C. Agarrval, J. Wolf, P. Yu, C. Procopiuc, and J. Park. Fast algorithms for projected clustering. Proceedings
of the 1999 ACM SIGMOD international conference on Management of data, 1999.

[15] V. de Silva, J.B. Tenenbaum, and J.C. Langford. A global geometric framework for nonlinear dimensionality
reduction. Science, 290:2319–2323, 2000.

[16] J.D. Hamilton. A new approach to the econometric analysis of nonstationary time series and the bysiness
cycle. Econometrica, 57:357–384, 1989.

[17] C.R. Nelson and C.J. Kim. State–space models with regime switching: classical and Gibbs–sampling ap-
proaches. MIT Press, 1999.

[18] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Trans. Informat. Theory, 13:260–269, 1967.

[19] L.E. Baum. An inequality and associated maximization technique in statistical estimation for probabilistic
functions of Markov processes. Inequalities, 3:1–8, 1972.

[20] G. McLachlan and D. Peel. Finite mixture models. Wiley, New–York, 2000.

This is a preliminary version. Do not circulate!



Automated Generation of Reduced Stochastic Weather Models I: simultaneous dimension and model reduction for time series analysis4017

[21] I. Horenko, J. Schmidt-Ehrenberg, and Ch. Schuette. Set-oriented dimension reduction: Localizing principal
component analysis via hidden markov models. In LNBI: Proceedings of the 2nd International Symposium
on Computational Life Science, volume 4216, pages 74–85, 2006.

[22] J.A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Applications to Parameter Estimation for
Gaussian Mixture and Hidden Markov Models. Thechnical Report. International Computer Science Institute,
Berkeley, 1998.

[23] G. Box and G. Jenkins. Time Series Analysis, Forecasting, and Control. Holden–Day, 1976.
[24] S.M. Kay. Vector space solution to the multi dimensional yule-walker equations. In IEEE International

Conference on Acoustics, Speech and Signal Proceedings., volume 3, pages 289–292, 2003.
[25] P. Premakanthan and W.B. Mikhael. Multidimensional model based speech signal representations for

automatic speaker identification. In Proceedings of Circuits, Signals, and Systems, 2004.
[26] S. Papadimitriou, A. Bockwell, and C. Faloutsos. Adaptive, unsupervised stream mining. VLDB J.,

13(3):222–239, 2004.
[27] A. Majda, C. Franzke, A. Fischer, and D. Crommelin. Distinct metastable atmospheric regimes despite

nearly gaussian statistics : A paradigm model. PNAS, 103(22):8309–8314, 2006.
[28] G. Branstator and S.E. Haupt. An empirical model of barotropic atmospheric dynamics and its response

to tropical forcing. J. Climate, 11:2645, 1998.
[29] A. Stuart and P. Wiberg. Parameter estimation for partially observed hypoelliptic diffusion. 2004. (available

via www.Maths.Warwick.ac.uk/ stuart).
[30] U. Achatz and J.D. Opsteegh. Principal interaction patterns in baroclinic wave life cycles. J. Atmos. Sci.,

52:3201–3213, 1995.
[31] F. Kwasniok. The reduction of complex dynamical systems using principal interaction and oscillation

patterns. Physica D, 92:28–60, 1996.
[32] F. Kwasniok. Empirical low-order models of barotropic flow. J. Atmos. Sci., 61:235–245, 2004.
[33] I. Horenko, E. Dittmer, A. Fischer, and Ch. Schuette. Automated model reduction for complex systems

exhibiting metastability. to appear in Mult. Mod. Sim., 2006. (available via biocomputing.mi.fu-berlin.de).
[34] I. Horenko, E. Dittmer, and Ch. Schuette. Reduced stochastic models for complex molecular systems.

Comp. Vis. Sci., 9(2):89–102, 2006.
[35] I. Horenko and C. Schuette. Likelihood-based estimation of Langevin models and its application to bio-

molecular dynamics. submitted to MMS, 2006. (available via biocomputing.mi.fu-berlin.de).
[36] A. Simmons and J. Gibson. The ERA 40 project plan. In ERA 40 Project Rep. Ser. 1, 2000. European

Center for Medium-Range Weather Forcasting, Reading.
[37] P.J. Brockwell and R.A. Davis. Introduction to Time Series and Forecasting. Springer, Berlin, 2002.
[38] I. Horenko and C. Hartmann. Blind model reduction for high-dimensional time-dependant data. submitted

to Physica D, 2005. (available via biocomputing.mi.fu-berlin.de).
[39] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM

algorithm. J. Roy. Stat. Soc. B, 39(1):1–38, 1977.
[40] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occuring in the statistical

analysis of probabilistic functions of Markov chains. Ann. Math. Stat., 41(1):164–171, 1970.
[41] P. Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, vol-

ume 35 of Computational Mathematics. Springer, Heidelberg, 2004.
[42] R.J. Reed. The structure and dynamics of the 26-month oscillation. In Proc. Intern. Symp. “Dynamics of

large-scale processes in the atmosphere”, Moscow, pages 376–387, 1967.
[43] R.S. Lindzen and J.R. Holton. A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25:1095–1107,

1968.
[44] V.K. Petokhov. Two mechanisms of temperature oscillations in a thermodynamical model of the

troposphere-stratosphere system. Izvestiya, Atmos. Ocean. Phys., 18(2):126–136, 1982.
[45] J.W. Hurrell. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation.

Science, 269:676–679, 1995.
[46] J.W. Hurrell, M.P. Hoerling, A.S. Phillips, and T. Xu. Twentieth century north atlantic climate change.

part 1: assessing determinism. Clim. Dyn., 23:371–389, 1995.
[47] I.N. James. Some aspects of the global circulation of the atmosphere in january and july 1980. In Large-

scale dynamical processes in the atmosphere. Hoskins B, Pearce R (edts.), Academic Press, New York, pages
5–26, 2001.

This is a preliminary version. Do not circulate!


